H(t)=-4.9t^2+60

Simple and best practice solution for H(t)=-4.9t^2+60 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-4.9t^2+60 equation:



(H)=-4.9H^2+60
We move all terms to the left:
(H)-(-4.9H^2+60)=0
We get rid of parentheses
4.9H^2+H-60=0
a = 4.9; b = 1; c = -60;
Δ = b2-4ac
Δ = 12-4·4.9·(-60)
Δ = 1177
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1177}}{2*4.9}=\frac{-1-\sqrt{1177}}{9.8} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1177}}{2*4.9}=\frac{-1+\sqrt{1177}}{9.8} $

See similar equations:

| |r+9|-3=13 | | 1/2(4x-7)=2x+7 | | 5x-(2x+3)(x-1)=5 | | 4r+7-r=15+3r | | 4r+7-r=15=3r | | 15=20−t | | D(G)=30(5g) | | X=(10+7)x(25-13) | | 5×x/7=19 | | H(m)=54+14 | | (10+7)x(25-13)=x | | H(m)=54+14m | | 5x(7x-5)=0 | | 3(4w+4)=-35 | | 9=63/r | | h/3-5=74 | | 3y+7=26 | | (3/4t^2)-(150/18t)=200 | | (2x+33)=(5x-6) | | 2y^2-y-7=0 | | 3/4t^2-150/18t=200 | | x(17x+8)=240 | | 264+26(2)=n | | 7c-12=30 | | -7/9(x+3)=14 | | (x^2-4x+9)^2-8(x^2-4x+9)+15=0 | | 5x−3=7+5 | | 5.9a+14=84.8 | | -8/3=-4/5w-7/3 | | 4x-8=-2x+12+5x | | 5x−3=7+3x | | 7(4s+1)=343 |

Equations solver categories